Extensions 1→N→G→Q→1 with N=C42.C2 and Q=D7

Direct product G=NxQ with N=C42.C2 and Q=D7
dρLabelID
D7xC42.C2224D7xC4^2.C2448,1140

Semidirect products G=N:Q with N=C42.C2 and Q=D7
extensionφ:Q→Out NdρLabelID
C42.C2:1D7 = D28.4Q8φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:1D7448,600
C42.C2:2D7 = C42.70D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:2D7448,601
C42.C2:3D7 = C42.216D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:3D7448,602
C42.C2:4D7 = C42.148D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:4D7448,1142
C42.C2:5D7 = D28:7Q8φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:5D7448,1143
C42.C2:6D7 = C42.150D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:6D7448,1145
C42.C2:7D7 = C42.151D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:7D7448,1146
C42.C2:8D7 = C42.152D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:8D7448,1147
C42.C2:9D7 = C42.153D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:9D7448,1148
C42.C2:10D7 = C42.154D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:10D7448,1149
C42.C2:11D7 = C42.155D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:11D7448,1150
C42.C2:12D7 = C42.156D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:12D7448,1151
C42.C2:13D7 = C42.157D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:13D7448,1152
C42.C2:14D7 = C42.158D14φ: D7/C7C2 ⊆ Out C42.C2224C4^2.C2:14D7448,1153
C42.C2:15D7 = C42.236D14φ: trivial image224C4^2.C2:15D7448,1141
C42.C2:16D7 = C42.237D14φ: trivial image224C4^2.C2:16D7448,1144

Non-split extensions G=N.Q with N=C42.C2 and Q=D7
extensionφ:Q→Out NdρLabelID
C42.C2.1D7 = C42.8D14φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.1D7448,100
C42.C2.2D7 = Dic14.4Q8φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.2D7448,597
C42.C2.3D7 = C42.215D14φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.3D7448,598
C42.C2.4D7 = C42.68D14φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.4D7448,599
C42.C2.5D7 = C42.71D14φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.5D7448,603
C42.C2.6D7 = Dic14:7Q8φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.6D7448,1138
C42.C2.7D7 = C42.147D14φ: D7/C7C2 ⊆ Out C42.C2448C4^2.C2.7D7448,1139

׿
x
:
Z
F
o
wr
Q
<